1. Let M be complete with $K(σ) \leq 0$ for every 2-planes $σ \subset T_pM$, $\forall p \in M$. Prove that $\forall p \in M$, $\exp_p : T_pM \to M$ is a local diffeomorphism.

2. Let e_1, \ldots, e_n be an orthonormal basis of T_pM, $(U, ϕ)$ the corresponding normal chart at p, and g_{ij} the corresponding component functions of the Riemannian metric. Prove that

 $g_{ij}(\exp_p v) = δ_{ij} - \frac{1}{3} \langle R(e_i, v)e_j, e_j \rangle + O(|v|^3), \quad \text{for } \exp_p v \in U. \quad \text{[Recall Exercise 9/5.]}$

3. Let $A_{ij} : \mathbb{R} \to \mathbb{R}$, $i, j = 1, \ldots, n$, be smooth mappings and denote $A = (A_{ij})$. Suppose that $\det A(0) > 0$. Prove that the function $\det A$ has the expansion

 \[
 \frac{\det A(t)}{\det A(0)} = 1 + t \cdot \text{tr}(A'A^{-1})(0) + \frac{t^2}{2} \left(\text{tr}(A''A^{-1})(0) - \text{tr}((A'A^{-1})^2)(0) + (\text{tr}(A'A^{-1})(0))^2 \right) + O(t^3)
 \]

 in a neighborhood of 0. \quad \text{[Recall Exercise 6/5.]}$

4. Prove that in the situation of Exercise 2,

 $\det(g_{ij}(\exp_p v)) = 1 - \frac{1}{3} \text{Ric}(v, v) + O(|v|^3)$

 for $\exp_p v \in U$.

5. Let $γ : I \to M$ be a geodesic, $0 \in I$, and $p = γ(0)$. Prove that, for every $h \in C^\infty(p)$, we have

 $(h \circ γ)'(0) = \text{Hess} h(\dot{γ}_0, \dot{γ}_0).$