Demographic fluctuations in a population of anomalously diffusing individuals

Piero Olla
olla@dsf.unica.it

ISAC-CNR Sez. Cagliari
Galton-Watson process

- Take N_0 bugs and place them in a box.
Galton-Watson process

- Take N_0 bugs and place them in a box.
- Simple birth-death dynamics.
Galton-Watson process

- Take N_0 bugs and place them in a box.
- Simple birth-death dynamics.
- Neutral conditions: $dP_{birth} = dP_{death} = \Gamma dt$.
Galton-Watson process

- Take \(N_0 \) bugs and place them in a box.
- Simple birth-death dynamics.
- Neutral conditions: \(\text{d}P_{birth} = \text{d}P_{death} = \Gamma \text{d}t \).
- The population remains constant on the average:

\[
\langle N(t) \rangle = N_0 + \langle N_{birth}(t) \rangle - \langle N_{death}(t) \rangle = N_0
\]
Galton-Watson process

- Take N_0 bugs and place them in a box.
- Simple birth-death dynamics.
- Neutral conditions: $dP_{birth} = dP_{death} = \Gamma dt$.
- The population remains constant on the average:

$$\langle N(t) \rangle = N_0 + \langle N_{birth}(t) \rangle - \langle N_{death}(t) \rangle = N_0$$

- But its variance grows linearly with time:

$$\sigma^2_{N(t)} = 2N_0\Gamma t$$
Galton-Watson process

- Take N_0 bugs and place them in a box.
- Simple birth-death dynamics.
- Neutral conditions: $dP_{birth} = dP_{death} = \Gamma dt$.
- The population remains constant on the average:
 \[
 \langle N(t) \rangle = N_0 + \langle N_{birth}(t) \rangle - \langle N_{death}(t) \rangle = N_0
 \]
- But its variance grows linearly with time:
 \[
 \sigma^2_{N(t)} = 2N_0\Gamma t
 \]
- Extinction in time $t_{ext} \sim N_0\Gamma^{-1}$.
The mechanism is simple:

- In a time dt:

$$\langle dN_{\text{birth}} \rangle = \langle dN_{\text{death}} \rangle = N_0 \Gamma dt$$
The mechanism is simple:

- In a time dt:
 \[\langle dN_{birth} \rangle = \langle dN_{death} \rangle = N_0 \Gamma dt \]

- Independent births and deaths:
 \[\sigma^2_{dN_{birth}} = \langle dN_{birth} \rangle; \]
 \[\sigma^2_{dN_{death}} = \langle dN_{death} \rangle \Rightarrow \]
 \[\sigma^2_{dN} = \sigma^2_{dN_{birth}} + \sigma^2_{dN_{death}} = 2N_0 \Gamma dt \]
The mechanism is simple:

- In a time dt:
 \[
 \langle dN_{birth} \rangle = \langle dN_{death} \rangle = N_0 \Gamma dt
 \]

- Independent births and deaths:
 \[
 \sigma^2_{dN_{birth}} = \langle dN_{birth} \rangle;
 \sigma^2_{dN_{death}} = \langle dN_{death} \rangle \Rightarrow
 \]
 \[
 \sigma^2_dN = \sigma^2_{dN_{birth}} + \sigma^2_{dN_{death}} = 2N_0 \Gamma dt
 \]

- Summing up to time t:
 \[
 \sigma^2_N(t) = 2N_0 \Gamma t
 \]
Including some spatial structure

Divide the domain in cells and distribute bugs uniformly in them.

\[n(x, t) \]

\[L \]

\[t=0 \]

Wait some time...
Including some spatial structure

Taller towers balance on the average increasingly wider gaps where the bugs have gone extinct.
Brownian bugs

The bugs can migrate by executing a Brownian motion.
Brownian bugs

- The bugs can migrate by executing a Brownian motion.
- Mapping to a branching Brownian motion problem.
Brownian bugs

- The bugs can migrate by executing a Brownian motion.
- Mapping to a branching Brownian motion problem.
 - Constant mean density if bugs are initially uniformly distributed:
 \[\rho_1(x, t) \equiv \langle n(x, t) \rangle = n_0 \]
 - Clustering behavior in \(D \leq 2 \):
 \[\sigma_{n(x,t)}^2 \propto t^{1/2} \quad (D = 1); \quad \sigma_{n(x,t)}^2 \propto \ln t \quad (D = 2). \]
Brownian bugs

- The bugs can migrate by executing a Brownian motion.
- Mapping to a branching Brownian motion problem.
 - Constant mean density if bugs are initially uniformly distributed:
 \[
 \rho_1(x, t) \equiv \langle n(x, t) \rangle = n_0
 \]
 - Clustering behavior in \(D \leq 2 \):
 \[
 \sigma^2_{n(x,t)} \propto t^{1/2} \quad (D = 1); \quad \sigma^2_{n(x,t)} \propto \ln t \quad (D = 2).
 \]
 - Correlation length of fluctuations determined by Brownian motion scale \(\lambda(t) \sim (\kappa t)^{1/2} \).
Again simple mechanism

- Smearing effect by diffusion

\[\sigma^2_{n(x,t)} \sim n_0(\kappa t)(\lambda(t))^{-D} \]
Again simple mechanism

- Smearing effect by diffusion

\[\sigma^2_{n(x,t)} \sim n_0(\kappa t)(\lambda(t))^{-D} \]

- \(\sigma^2 \propto t \) maximal growth in Galton-Watson case.
Again simple mechanism

- Smearing effect by diffusion
 \[\sigma_n^2(x,t) \sim n_0(\kappa t)(\lambda(t))^{-D} \]
- \(\sigma^2 \propto t \) maximal growth in Galton-Watson case.
- Recall \(\lambda(t) \propto t^{1/2} \), that precludes clustering for \(D = 3 \).
We wander whether we could extend the approach to more general (anomalous) diffusion processes.
Practical relevance

Population migration in random environments (possibility of long permanences conditioned to availability of resources \Rightarrow subdiffusion).
Practical relevance

- Population migration in random environments (possibility of long permanences conditioned to availability of resources \Rightarrow subdiffusion).
- Migration in the presence of long jumps (Lévy flights \Rightarrow superdiffusion).
Practical relevance

- Population migration in random environments (possibility of long permanences conditioned to availability of resources \Rightarrow subdiffusion).
- Migration in the presence of long jumps (Lévy flights \Rightarrow superdiffusion).
- Ageing in mutation phenomena (migration in genotype space; selection as a form of clustering in genotype space).
An important issue

Giving the Hurst exponent H: $\langle |x(t) - x(0)|^2 \rangle \propto t^{2H}$, does not define uniquely the diffusion process.
An important issue

- Giving the Hurst exponent H: \[\langle |x(t) - x(0)|^2 \rangle \propto t^{2H} \]
does not define uniquely the diffusion process.

- Four classes could roughly be identified:
 - Gaussian processes, such as the fractional Brownian motion; individuals that migrate with a power-law correlated velocity (generalized Langevin equation).
 - Continuous time random walk (CTRW): discrete jumps are separated by waiting time characterized by a distribution with heavy tails.
 - Migration in a spatial assembly of random traps
 - Migration by Lévy flights (not properly a diffusion process).
The non-Markovian nature of the process makes the way diffusion is initialized at each birth event an important issue.
Prescription problem

- The non-Markovian nature of the process makes the way diffusion is initialized at each birth event an important issue.

- Fluctuations are accounted for by the connected family trees in (a).

- The disconnected trees in case (b) contribute \(n_0^2 \) to the correlation

\[
\rho_2(x_1, x_2; t) = \langle n(x_1, t)n(x_2, t) \rangle.
\]
Prescription problem

- The non-Markovian nature of the process makes the way diffusion is initialized at each birth event an important issue.

- Fluctuations are accounted for by the connected family trees in (a).

- The disconnected trees in case (b) contribute n_0^2 to the correlation $
ho_2(x_1, x_2; t) = \langle n(x_1, t)n(x_2, t) \rangle$.

- It is not clear whether the bug generated in (z, τ) should preserve memory of the trajectory followed by its ancestors or not.
A closer look at connected trees

\[
\rho_{2c}(x_1, x_2; t) = 2\Gamma \int_0^t d\tau \int dz \int dw \, \rho_1(x_1, t|z, \tau; w, 0) \\
\times \rho_1(x_2, t|z, \tau; w, 0) \rho_1(z, \tau|w, 0) \rho_1(w, 0).
\]
A closer look at connected trees

\[\rho_{2c}(x_1, x_2; t) = 2\Gamma \int_0^t d\tau \int dz \int dw \, \rho_1(x_1, t|z, \tau; w, 0) \times \rho_1(x_2, t|z, \tau; w, 0) \rho_1(z, \tau|w, 0) \rho_1(w, 0). \]

\(\rho_1(x, t|.) \) PDF to find an individual at \((x, t)\) conditional to previous position of individual itself or its ancestors.
A closer look at connected trees

\[
\rho_{2c}(x_1, x_2; t) = 2\Gamma \int_0^t d\tau \int dz \int dw \ \rho_1(x_1, t|z, \tau; w, 0) \\
\times \rho_1(x_2, t|z, \tau; w, 0) \rho_1(z, \tau|w, 0) \rho_1(w, 0).
\]

\(\rho_1(x, t|.)\) PDF to find an individual at \((x, t)\) conditional to previous position of individual itself or its ancestors.

As already stated, to calculate the connected correlation \(\rho_{2c}(x_1, x_2; t)\), we must consider family trees like the one beside.

As diffusion is non-Markovian, the conditioning on \((w, 0)\) in the \(\rho_1(x_{1,2}, t|z, \tau; w, 0)\) entering the equation for \(\rho_{2c}\) is not automatically irrelevant.
The case with no memory

Each new-born individuals starts a new trajectory, independent from that of its parent.
The case with no memory

- Each new-born individual starts a new trajectory, independent from that of its parent.
- Its trajectory will be the realization of an anomalous diffusion path:
 \[\langle |x(t) - x(t_{birth})|^2 \rangle = \kappa_H |t - t_{birth}|^{2H} \].
The case with no memory

- Each new-born individual starts a new trajectory, independent from that of its parent.

- Its trajectory will be the realization of an anomalous diffusion path:
 \[\langle |x(t) - x(t_{birth})|^2 \rangle = \kappa_H |t - t_{birth}|^{2H}. \]

- The trajectory followed by a sequence of individuals along a certain family line will be a sequence of independent chunks of length
 \[\sim X_\Gamma = \kappa_H \Gamma^{-2H}, \]
 that is the typical displace in an individual lifetime.
The case with no memory

- Each new-born individuals starts a new trajectory, independent from that of its parent.
- Its trajectory will be the realization of an anomalous diffusion path: \[\langle |x(t) - x(t_{\text{birth}})|^2 \rangle = \kappa_H |t - t_{\text{birth}}|^{2H}. \]
- The trajectory followed by a sequence of individuals along a certain family line will be a sequence of independent chunks of length \[\sim X_\Gamma = \kappa_H \Gamma^{-2H}, \] that is the typical displacent in an individual lifetime.
- The dynamics of the population started from any given individual is effectively Markovianized, and is characterized by a spreading

\[
X(t) \sim \bar{\kappa} t, \quad \bar{\kappa} = \Gamma X_\Gamma^2 \equiv \kappa_H \Gamma^{1-2H}
\]
The case with no memory

Each new-born individuals starts a new trajectory, independent from that of its parent.

Its trajectory will be the realization of an anomalous diffusion path: \(\langle |x(t) - x(t_{birth})|^2 \rangle = \kappa_H |t - t_{birth}|^{2H} \).

The trajectory followed by a sequence of individuals along a certain family line will be a sequence of independent chunks of length \(\sim X_\Gamma = \kappa_H \Gamma^{-2H} \), that is the typical displacent in an individual lifetime.

The dynamics of the population started from any given individual is effectively Markovianized, and is characterized by a spreading

\[X(t) \sim \bar{\kappa} t, \quad \bar{\kappa} = \Gamma X_\Gamma^2 \equiv \kappa_H \Gamma^{1-2H} \]
The effect on clustering

We expect to recover the same scaling as in the Brownian bug case.
The effect on clustering

- We expect to recover the same scaling as in the Brownian bug case.

- Indeed, in the case of a CTRW:

- Growth of σ_n^2 for $D = 1$ and $H = 0.25$ (subdiffusion). Case (a) is the one with no memory. Insert: scaling of the correlation length $\lambda(t)$. The slopes $t^{1/2}$ are shown for comparison.
The effect on clustering

- We expect to recover the same scaling as in the Brownian bug case.
- Again, in the case of a CTRW:

\[\tilde{C}(0, t, \tilde{t}) \]

- Growth of \(\sigma_n^2 \) for \(D = 1 \) and \(H = 0.75 \) (superdiffusion). The steeper lines come from including memory in a CTRW (\(s \)) and working with traps (\(d \)) (tough trouble; wait and see).
Recall the equation for ρ_{2c}:

$$
\rho_{2c}(x_1, x_2; t) = 2\Gamma \int_0^t d\tau \int dz \int dw \, \rho_1(x_1, t|z, \tau; w, 0) \\
\times \rho_1(x_2, t|z, \tau; w, 0) \rho_1(z, \tau|w, 0) \rho_1(w, 0).
$$

Assume $\rho_1(x, t|.)$ as in case with no demography.
Memory + Gaussian diffusion

Recall the equation for ρ_{2c}:

$$
\rho_{2c}(x_1, x_2; t) = 2\Gamma \int_0^t d\tau \int dz \int dw \; \rho_1(x_1, t|z, \tau; w, 0) \\
\times \rho_1(x_2, t|z, \tau; w, 0) \rho_1(z, \tau|w, 0) \rho_1(w, 0).
$$

Assume $\rho_1(x, t|.)$ as in case with no demography.

Carrying out the integrals we get after simple algebra

$$
\rho_{2c}(x_1, x_2; t) = \frac{\Gamma n_0}{2\sqrt{\pi}} \int_0^t \frac{d\tau}{\sigma(t; \tau)} \exp \left[- \frac{(x_1 - x_2)^2}{4\sigma^2(t, \tau)} \right].
$$

$$
\sigma^2(t, \tau) = \sigma^2(t) - \frac{\langle y(t)y(\tau) \rangle^2}{\sigma^2(\tau)};
$$

$$
\sigma^2(t) = \kappa_H |t|^{2H}; \quad y(t) = x(t) - x(0).
$$
Anomalous scaling

- If $t \gg \tau$, $\sigma(t, \tau) \rightarrow \sigma(t)$; no singularity for $\tau \rightarrow t$.
Anomalous scaling

- If $t \gg \tau$, $\sigma(t, \tau) \to \sigma(t)$; no singularity for $\tau \to t$.

- Power counting gives us $\rho_{2c}(x, x; t) = C \Gamma n_0 \kappa_H^{1/2} t^{1-H}$.
Anomalous scaling

- If $t \gg \tau$, $\sigma(t, \tau) \rightarrow \sigma(t)$; no singularity for $\tau \rightarrow t$.

- Power counting gives us $\rho_{2c}(x, x; t) = C\Gamma n_0 \kappa_H^{1/2} t^{1-H}$.

Fluctuation build-up for a Gaussian superdiffusive process ($H = 0.75$; heavy line). The line t^{1-H} is shown for comparison. Thin line obtained from Lévy flights (wait and see).
The other kingdom

Non-Gaussian processes

- CTRW-bugs: two throws of dice at each time: one to decide how long to wait; one to decide where to go. Waiting-time PDF with heavy tail to produce anomalous diffusion. Subdiffusion easy to get.

- Lévy-bugs: the same as Brownian bugs; the jump PDF is now heavy-tailed.
The other kingdom

- Non-Gaussian processes
 - CTRW-bugs: two throws of dice at each time: one to decide how long to wait; one to decide where to go. Waiting-time PDF with heavy tail to produce anomalous diffusion. Subdiffusion easy to get.
 - Lévy-bugs: the same as Brownian bugs; the jump PDF is now heavy-tailed.

Notice that Lévy bugs are Markovian; hence, they do not have a prescription problem.
The other kingdom

- Non-Gaussian processes
 - CTRW-bugs: two throws of dice at each time: one to decide how long to wait; one to decide where to go. Waiting-time PDF with heavy tail to produce anomalous diffusion. Subdiffusion easy to get.
 - Lévy-bugs: the same as Brownian bugs; the jump PDF is now heavy-tailed.

- Notice that Lévy bugs are Markovian; hence, they do not have a prescription problem.

- Anomalous scaling is produced in the two cases by events in the heavy tails. Migration by CTRW is dominated by the longer waiting times; migration by Lévy flights is dominated by the longer jumps (only superdiffusion possible in this case).
Lévy flights

Markovian dynamics \Rightarrow evolution equation for ρ_{2c} local in time

$$\rho_{2c}(x_1, x_2; t + \Delta t) = \int dy_1 \int dy_2 \rho_1(x_1, t + \Delta t|y_1, t) \times \rho_1(x_2, t + \Delta t|y_2, t) \rho_{2c}(y_1, y_2; t) + 2\Gamma n_0 \Delta t \delta(x_1 - x_2).$$
Lévy flights

- Markovian dynamics \Rightarrow evolution equation for ρ_{2c} local in time

$$\rho_{2c}(x_1, x_2; t + \Delta t) = \int dy_1 \int dy_2 \rho_1(x_1, t + \Delta t | y_1, t) \times \rho_1(x_2, t + \Delta t | y_2, t) \rho_{2c}(y_1, y_2; t) + 2\Gamma n_0 \Delta t \delta(x_1 - x_2).$$

- Power-law tails: $\rho_1(x, \Delta t | 0, 0) \propto |x|^{-1-\beta}$, $0 < \beta < 1$

$\Rightarrow \rho_{1k}(\Delta t) \simeq 1 - \alpha |k|^\beta \Delta t$. Notice $\alpha^{2/\beta} \sim (\Delta x)^2 / (\Delta t)^{1/\beta}$, diffusivity-like quantity.
Markovian dynamics ⇒ evolution equation for ρ_{2c} local in time

$$
\rho_{2c}(x_1, x_2; t + \Delta t) = \int dy_1 \int dy_2 \rho_1(x_1, t + \Delta t|y_1, t) \times \rho_1(x_2, t + \Delta t|y_2, t) \rho_{2c}(y_1, y_2; t) + 2\Gamma n_0 \Delta t \delta(x_1 - x_2).
$$

Power-law tails: $\rho_1(x, \Delta t|0, 0) \propto |x|^{-1-\beta}$, $0 < \beta < 1$

$\Rightarrow \rho_{1k}(\Delta t) \simeq 1 - \alpha |k|^{\beta} \Delta t$. *Notice* $\alpha^{2/\beta} \sim (\Delta x)^2 / (\Delta t)^{1/\beta}$, diffusivity-like quantity.

Equation for generating function

$$
\dot{\rho}_{2c,k} + 2\alpha |k|^\beta \rho_{2c,k} = 2\Gamma n_0,
$$

Forced “fractional” diffusion equation.
Lévy flights

- Markovian dynamics \(\Rightarrow\) evolution equation for \(\rho_{2c}\) local in time

\[
\rho_{2c}(x_1, x_2; t + \Delta t) = \int \! \! \int \, d y_1 \, d y_2 \, \rho_1(x_1, t + \Delta t | y_1, t) \\
\times \rho_1(x_2, t + \Delta t | y_2, t) \rho_{2c}(y_1, y_2; t) + 2 \Gamma n_0 \Delta t \delta(x_1 - x_2).
\]

- Power-law tails: \(\rho_1(x, \Delta t | 0, 0) \propto |x|^{-1-\beta}, \; 0 < \beta < 1\)

\[\Rightarrow \rho_{1k}(\Delta t) \approx 1 - \alpha |k|^{\beta} \Delta t. \text{ Notice } \alpha^{2/\beta} \sim (\Delta x)^2 / (\Delta t)^{1/\beta}, \text{ diffusivity-like quantity.}\]

- Equation for generating function

\[
\dot{\rho}_{2c,k} + 2\alpha |k|^\beta \rho_{2c,k} = 2 \Gamma n_0,
\]

Forced “fractional” diffusion equation.
The Lévy flights are characterized by infinite second moment $\langle |x(t) - x(0)|^2 \rangle = \infty$ also for a single jump. Nevertheless, $\rho_{1k}(\Delta t) \simeq 1 - \alpha |k|^{\beta} \Delta t$ identifies a characteristic length $y(t) \propto t^{1/\beta}$ that gives the scale of the clusters at time t.
Anomalous “diffusion” again

- The Lévy flights are characterized by infinite second moment \(\langle |x(t) - x(0)|^2 \rangle = \infty \) also for a single jump. Nevertheless, \(\rho_{1k}(\Delta t) \approx 1 - \alpha |k|^\beta \Delta t \) identifies a characteristic length \(y(t) \propto t^{1/\beta} \) that gives the scale of the clusters at time \(t \).

Recall the behavior \((1/\beta = 0.75; \text{thin line}; \text{the heavy line described Gaussian superdiffusion}) \).
The colony started by a bug, behaves, until it disperses, as an isolated population \(\Rightarrow \sigma_{N_{\text{colony}}}^2(t) \propto t \) (“social bugs”).
The colony started by a bug, behaves, until it disperses, as an isolated population $\Rightarrow \sigma^2_{N_{colony}}(t) \propto t$ (“social bugs”).

The fluctuation level in a given cell is obtained summing the contributions from the various colonies that form there in the time t.

CTRW with memory
The colony started by a bug, behaves, until it disperses, as an isolated population \(\Rightarrow \sigma_{N_{colony}}^2(t) \propto t \) (“social bugs”).

The fluctuation level in a given cell is obtained summing the contributions from the various colonies that form there in the time \(t \).

Since the average number of individuals in a colony is constant \((= 1)\) and the average number of individuals in the cell must also be constant, the colonies that form must be inversely proportional to their lifetime, and therefore:

\[
\sigma_{cell}^2 \sim \int_0^t d\tau \frac{d\text{Colonies}(\tau)}{d\tau} \times \sigma_{N_{colony}}^2(\tau) \sim t
\]
The colony started by a bug, behaves, until it disperses, as an isolated population \(\Rightarrow \sigma_{N_{colony}}^2(t) \propto t \) (“social bugs”).

The fluctuation level in a given cell is obtained summing the contributions from the various colonies that form there in the time \(t \).

Since the average number of individuals in a colony is constant \((= 1) \) and the average number of individuals in the cell must also be constant, the colonies that form must be inversely proportional to their lifetime, and therefore:

\[
\sigma_{cell}^2 \sim \int_0^t d\tau \frac{dColonies(\tau)}{d\tau} \times \sigma_{N_{colony}}^2(\tau) \sim t
\]

This is the same behavior of bugs that do not migrate!
Bugs in random traps

What about the case that CTRW dynamics arises from the presence of random traps in the environment?
Bugs in random traps

- What about the case that CTRW dynamics arises from the presence of random traps in the environment?
- Bugs in the same trap share the same jump time.
Bugs in random traps

What about the case that CTRW dynamics arises from the presence of random traps in the environment?

Bugs in the same trap share the same jump time.

They seem to be VERY social bugs; actually, bugs arriving in the same trap, form colonies that disperse at the same time, while “simply social” colonies sharing a same location in space, do not share an identical dispersal time.
Bugs in random traps

- What about the case that CTRW dynamics arises from the presence of random traps in the environment?
- Bugs in the same trap share the same jump time.
- They seem to be VERY social bugs; actually, bugs arriving in the same trap, form colonies that disperse at the same time, while “simply social” colonies sharing a same location in space, do not share an identical dispersal time.
- However, “simply” social bugs are already characterized by a maximal level of fluctuation ($\sigma_n^2 \propto t$) and random traps make bugs to disperse even less than in the simple social case.
Bugs in random traps

What about the case that CTRW dynamics arises from the presence of random traps in the environment?

Bugs in the same trap share the same jump time.

They seem to be VERY social bugs; actually, bugs arriving in the same trap, form colonies that disperse at the same time, while “simply social” colonies sharing a same location in space, do not share an identical dispersal time.

However, “simply” social bugs are already characterized by a maximal level of fluctuation ($\sigma_n^2 \propto t$) and random traps make bugs to disperse even less than in the simple social case.

We expect the fluctuation growth in the case of random traps to remain maximal.
Numerical results

Growth of $C(0; t, t)$ in $D = 1$ and subdiffusive regime. Antisocial bugs (a), social bugs (s) and bugs in random traps (d). Insert: scaling of $\lambda(t)$ in the “antisocial case”.
Numerical results

Growth of $C(0; t, t)$ in $D = 1$ and superdiffusive regime. Antisocial bugs (a), social bugs (s) and bugs in random traps (d). Insert: scaling of $\lambda(t)$ in the “antisocial case”.
Numerical results

Sequence of snapshots of a population in a 2D field of traps. A small diffusivity is added to mimic the effect of small scale individual motion.
Numerical results

Growth of $C(0; t, t)$ in $D = 2$ (a) and $D = 1$ (b) for different mean numbers of bugs per trap (values range from 1 to 200).
Gaussian anomalous diffusion (FBM, individuals moving with velocity that is solution of a GLE, and others): if offsprings share memory of the trajectories with their parents, demographic fluctuations will scale anomalously. Otherwise, the case of Brownian bugs is recovered.
Gaussian anomalous diffusion (FBM, individuals moving with velocity that is solution of a GLE, and others): if offsprings share memory of the trajectories with their parents, demographic fluctuations will scale anomalously. Otherwise, the case of Brownian bugs is recovered.

Lévy flights: demographic fluctuations scale anomalously.
Summarizing

- Gaussian anomalous diffusion (FBM, individuals moving with velocity that is solution of a GLE, and others): if offsprings share memory of the trajectories with their parents, demographic fluctuations will scale anomalously. Otherwise, the case of Brownian bugs is recovered.

- Lévy flights: demographic fluctuations scale anomalously.

- CTRW: in the absence of memory transfer between generations, the case of Brownian bugs is recovered. If the offsprings share their escape time with their parents, the dynamics falls back on that of a Galton-Watson process.
Summarizing

- Gaussian anomalous diffusion (FBM, individuals moving with velocity that is solution of a GLE, and others): if offsprings share memory of the trajectories with their parents, demographic fluctuations will scale anomalously. Otherwise, the case of Brownian bugs is recovered.

- Lévy flights: demographic fluctuations scale anomalously.

- CTRW: in the absence of memory transfer between generations, the case of Brownian bugs is recovered. If the offsprings share their escape time with their parents, the dynamics falls back on that of a Galton-Watson process.

- A spatial assembly of random traps: the dynamics falls back again on that of a Galton-Watson process.
Conclusion

In the case of non-Markovian processes, memory transfer among generation is the crucial ingredient to produce departure from Brownian bug behaviors at the population level.
Conclusion

- In the case of non-Markovian processes, memory transfer among generation is the crucial ingredient to produce departure from Brownian bug behaviors at the population level.

- An effective alternative is provided by Lévy flights.
Conclusion

In the case of non-Markovian processes, memory transfer among generation is the crucial ingredient to produce departure from Brownian bug behaviors at the population level.

An effective alternative is provided by Lévy flights.

In the case of subdiffusion, the formula $\sigma^2_{n(t)} \sim t^{1-DH}$ tells us that clustering phenomena may become possible in $D = 3$.
Conclusion

In the case of non-Markovian processes, memory transfer among generation is the crucial ingredient to produce departure from Brownian bug behaviors at the population level.

An effective alternative is provided by Lévy flights.

In the case of subdiffusion, the formula $\sigma_{n(t)}^2 \sim t^{1-DH}$ tells us that clustering phenomena may become possible in $D = 3$.

Conversely, clustering is destroyed even in $D = 1$ if diffusion is faster than ballistic $H > 1$.
Conclusion

In the case of non-Markovian processes, memory transfer among generation is the crucial ingredient to produce departure from Brownian bug behaviors at the population level.

An effective alternative is provided by Lévy flights.

In the case of subdiffusion, the formula $\sigma^2_{n(t)} \sim t^{1-DH}$ tells us that clustering phenomena may become possible in $D = 3$.

Conversely, clustering is destroyed even in $D = 1$ if diffusion is faster than ballistic $H > 1$.

Galton-Watson like behaviors recovered in the case of random traps and CTRW with memory. Open question: what happens in the case of the traps, when they are distributed with respect to size and waiting times?
Conclusion

- In the case of non-Markovian processes, memory transfer among generation is the crucial ingredient to produce departure from Brownian bug behaviors at the population level.

- An effective alternative is provided by Lévy flights.

- In the case of subdiffusion, the formula $\sigma^2_{n(t)} \sim t^{1-DH}$ tells us that clustering phenomena may become possible in $D = 3$.

- Conversely, clustering is destroyed even in $D = 1$ if diffusion is faster than ballistic $H > 1$.

- Galton-Watson like behaviors recovered in the case of random traps and CTRW with memory. Open question: what happens in the case of the traps, when they are distributed with respect to size and waiting times?