Analysis of eigenvalue ensembles using Ward identities

Yacin Ameur
Main collaborators: N. G. Makarov, N.-G. Kang

Centre for Mathematical Sciences
Lund University, Sweden
Yacin.Ameur@maths.lth.se

Helsinki, April 6 2016
Particle systems

A system \(\{ \zeta_i \}_{i=1}^n \in \mathbb{C} \) ("point charges") in external field \(nQ \).

- **Energy:**
 \[
 H_n = \sum_{j \neq k}^{n} \log \frac{1}{|\zeta_j - \zeta_k|} + n \sum_{j=1}^{n} Q(\zeta_j).
 \]

- **Boltzmann–Gibbs law:**
 \[
 dP_n(\zeta) = \frac{1}{Z_n^\beta} e^{-\beta H_n(\zeta)} d^{2n} \zeta, \quad \zeta = (\zeta_j)_{1}^{n}.
 \] (1)

- **Assumptions.** \(Q : \mathbb{C} \rightarrow \mathbb{R} \cup \{+\infty\} \) is l.s.c., \(C^\omega \)-smooth, and
 \[
 Q(\zeta) \gg \log |\zeta|, \quad (\zeta \rightarrow \infty).
 \]

A minimizer \(\{ \zeta_j \}_{1}^{n} \) of \(H_n \) is a **Fekete-configuration**.
Frostman’s equilibrium measure

- **Q-energy** of a Borel p.m. μ on \mathbb{C}

$$I(\mu) := \iint \log \frac{1}{|\zeta - \eta|} \, d\mu(\zeta)d\mu(\eta) + \int Q \, d\mu.$$

The **equilibrium measure** σ minimizes $I(\mu)$ where $\mu(\mathbb{C}) = 1$.

- **Droplet**

$$S = S[Q] := \text{supp } \sigma. \quad (2)$$

Theorem

(Frostman)

$$d\sigma(z) = \chi_S(z) \, \Delta Q(z) \, dA(z).$$

(In particular $\Delta Q \geq 0$ on S.)

Conformal metric:

$$ds^2 = \Delta Q(\zeta)|d\zeta|^2.$$

Abrikosov: Fekete configuration \leftrightarrow honeycomb lattice.
Nature of droplets

Lemma
Fix \(p \in \partial S \). There is a nbh \(N \) of \(p \) and a "local Schwarz function" \(s(\zeta) \) on \(N \) obeying
- \(s \) is analytic in \(N \setminus S \),
- \(s \) is continuous on \(N \) and

\[
\bar{\zeta} = s(\zeta), \quad \zeta \in (\partial S) \cap N.
\]

Theorem
(Sakai, 1991) \(\partial S \) is a union of finitely many analytic curves. Possible singularities: cusps pointing out of \(S \) and double points.

Complement \(S^c \) is an Unbounded Quadrature Domain (in wide sense of Shapiro).
Droplets 1

Technical assumptions:
- Q is real-analytic in a nbh of S.
- $\Delta Q > 0$ in a nbh of ∂S.

Figure: The Deltoid is not admissible; it has three maximal 3/2 cusps. 5/2 cusp is OK.
Figure: Double point and 5/2 cusp under Hele-Shaw flow.
Joint intensities

Let \(\{\zeta_j\}_1^n \) random sample. \(k \)-point function

\[
R_{n,1}(\eta) = \lim_{\epsilon \to 0} \frac{P_n(D(\eta; \epsilon) \cap \{\zeta_j\}_1^n \neq \emptyset)}{\epsilon^2},
\]

\[
R_{n,2}(\eta_1, \eta_2) = \lim_{\epsilon \to 0} \frac{P_n(D(\eta_l; \epsilon) \cap \{\zeta_j\} \neq \emptyset, \quad l = 1, 2)}{\epsilon^4}, \quad \text{etc.}
\]

Asymptotics as \(n \to \infty \) should give CFT.

If \(\beta = 1 \), the process is \textit{determinantal},

\[
R_{n,k}(\eta_1, \ldots, \eta_k) = \det \left(K_n(\eta_i, \eta_j) \right)_{i,j=1}^k.
\]

Here \(K_n \) is a "correlation kernel" = reprokernel for

\[
\mathcal{N}_n := \{ q \cdot e^{-nQ/2}; \ \text{degree}(q) < n \} \subset L^2.
\]

Note: \(E_n(f(\zeta_1, \ldots, \zeta_k)) = \frac{(n-k)!}{n!} \int_{\mathbb{C}^k} f \cdot R_{n,k} \).
"Classical" convergence result (for all β)

Random measure

$$\mu_n := \frac{1}{n} \sum_{1}^{n} \delta_{\zeta_j}.$$

For $f \in W^{1,2}$

$$\sigma_n(f) := E_n(\mu_n(f)) = \frac{1}{n} \sum_{1}^{n} E_n(f(\zeta_j)) = \frac{1}{n} \int_{\mathbb{C}} f \cdot R_n.$$

Theorem

$$(MH) \frac{1}{n} R_n \, dA \to \sigma \text{ and } $$

$$\sigma_n(f) \to \int f \, d\sigma, \quad (n \to \infty).$$

(Here $R_n = R_{n,1}$.)
Example: Ginibre ensemble ($\beta = 1$)

Let $Q(\zeta) = |\zeta|^2$. Then $S = \{ |\zeta| \leq 1 \}$ and $\sigma = \chi_S \, dA$.

The process $\{\zeta_i\}_1^n$ can be interpreted as eigenvalues of an $n \times n$-matrix with i.i.d. centered complex Gaussian entries of variance $1/n$.

Figure: A sample of the Ginibre process for a large value of n. We will later look at the process near the boundary.
Fluctuation theorem ($\beta = 1$)

Random measures $\text{fluct}_n := n(\mu_n - \sigma) = \sum_1^n \delta\zeta_j - n\sigma$.

Random variables on $\left(\mathbb{C}^n, \mathbb{P}_n\right)$

$$\text{fluct}_n(f) = \sum_{1}^{n} f(\zeta_j) - n\sigma(f), \quad (f \in \mathcal{C}_b^\infty(\mathbb{C})).$$

Theorem

$\text{fluct}_n(f)$ converges in distribution to the normal $N(e_f, \sigma_f^2)$, where

$$e_f = \frac{1}{8\pi} \int_{\mathbb{C}} f \cdot \Delta(\chi_S + L^S), \quad \sigma_f^2 = \frac{1}{2} \int_{\mathbb{C}} |\nabla f^S|^2, \quad (L = \log \Delta Q).$$

Here f^S equals f in S and is harmonic and bounded in $\mathbb{C} \setminus S$.

Yacin Ameur Main collaborators: N. G. Makarov, N.-G. Kang (LU)

Analysis of eigenvalue ensembles using Ward identities

Helsinki, April 6 2016 10 / 42
There is no \((1/\sqrt{n})\)-normalization!

Theorem says that random distributions

\[
\text{fluct}_n - \Delta(\chi_S + L^S)
\]

converge to GFF on \(S\) with free boundary conditions.

Test-class should be \(f \in W^{1,2}(\mathbb{C})\): GFF is an isometry \(\Phi: W^{1,2}(\mathbb{C}) \rightarrow L^2(P)\) such that \(\Phi(f)\) is centered normal with variance \(\int |f^S|^2 \, dA\), and (Wick’s formalism)

\[
\langle \Phi(f_1) \cdots \Phi(f_{2p}) \rangle = \sum_{k=1}^p \prod_{k=1}^p \langle f_{i_k}, f_{j_k} \rangle \nabla.
\]

The theorem is only proved for connected \(S\) with everywhere regular boundary.

There are "physical" results for arbitrary \(\beta\); also results by Johansson in dim 1. Our method "should" extend, but we need some estimates.
Field approximations: CFT_n

Let $(\zeta_j)_1^n$ and $(\zeta'_j)_1^n$ independent random samples, and put

$$\Phi_n(z) = 2 \sum_{j=1}^{n} (G(z, \zeta_j) - G(z, \zeta'_j))$$

where G is Green's function for S. In a sense Φ_n converges to the GFF Φ on S with Dirichlet boundary conditions, for example ($\beta = 1$)

$$E_n [\Phi_n(z)\Phi_n(w)] = G(z, w) + o(1),$$
$$E_n \left[\Phi_n(z)^2 \right] = \log \sqrt{n} + (1 + \gamma)/2 + c(z) + o(1),$$

where $c(z) = \lim_{w \to z} (G(z, w) + \log |z - w|)$ is log-conformal radius. For suitable "finite parts", $\Phi_n^2 \to \Phi^*^2$ (OPE square).

Similarly, one can obtain other constructions from CFT on a concrete level.
Ward’s identity

Let $\{\zeta_j\}_1^n$ system. For smooth ψ define r.v.’s

$$A_\psi = \frac{1}{2} \sum_{j \neq k}^n \frac{\psi(\zeta_j) - \psi(\zeta_k)}{\zeta_j - \zeta_k}, \quad B_\psi = n \sum_1^n \partial Q(\zeta_j) \psi(\zeta_j), \quad C_\psi = \sum_1^n \partial \psi(\zeta_j).$$

Theorem

For all ψ

$$E_n(\beta \cdot (A_\psi - B_\psi) + C_\psi) = 0.$$

This is an implicit relation between $R_{n,1}$ and $R_{n,2}$.

(Proof: reparametrization invariance of the partition function

$$Z_n := \int_{\mathbb{C}^n} e^{-\beta H_n} dV_n.$$
Rescaling

\[\{ \zeta_j \}^n_1 \text{ random sample from } P_n. \text{ Fix } p_n \in S, \theta_n \in \mathbb{R}. \]

Mesoscopic scale: \(r_n = r_n(p_n) \) satisfies:

\[
n \cdot \int_{D(p_n,r_n)} \Delta Q(\zeta) \, dA(\zeta) = 1.
\]

If \(\Delta Q(p) > 0 \) then \(r_n \sim 1/\sqrt{n\Delta Q(p)} \).

Rescaled system:

\[
z_j = e^{-i\theta_n r_n^{-1} (\zeta_j - p_n)}.
\]
Rescaled process \((\beta = 1)\)

Rescaled process \(\Theta_n := \{z_j\}_1^n\) has \(k\)-point function

\[
R_{n,k}(z_1, \ldots, z_k) = r_n^{2k} R_{n,k}(\zeta_1, \ldots, \zeta_k).
\]

We have:

\[
R_{n,k}(z_1, \ldots, z_k) = \det(K_n(z_i, z_j))_{i,j=1}^k, \quad K_n(z, w) := r_n^2 K_n(\zeta, \eta).
\]

Known: if \(p \in \text{Int } S\), then \(R_{n,k}(z_1, \ldots, z_k) \rightarrow \det(G(z_i, z_j))_{k \times k}\) where

\[
G(z, w) = e^{z \bar{w} - |z|^2/2 - |w|^2/2}.
\]

is Ginibre kernel.
Compactness and analyticity

A **cocycle** is a function $c(z, w) = g(z) \bar{g}(w)$ where g is continuous and unimodular. Correlation kernels are only determined up to cocycles.

Theorem

There are cocycles c_n such that (on subsequences)

$$c_{n_k} K_{n_k} \to K, \quad \text{where} \quad K(z, w) = G(z, w) \psi(z, w).$$

Here $G(z, w) = e^{-|z|^2/2-|w|^2/2+z\bar{w}}$ and $\psi(z, w)$ is Hermitian entire.

(Proof: Taylor’s formula + normal families.)

A limit point $K = G\psi$ is called a **limiting kernel** at (moving) point p.
Limiting point fields

A limiting kernel K is correlation kernel of a limiting point field $\{\zeta_j\}_{1}^{\infty}$ with k-point function $R_k(\eta_1, \ldots, \eta_k) = \det(K(\eta_i, \eta_j))_{i,j=1}^{k}$. Limiting 1-pt function

$$\begin{align*}
R(z) &:= K(z,z) = \Psi(z,z).
\end{align*}$$

R determines Ψ by polarization and $K = G\Psi$ so

R determines all k-point functions.
Forrester–Honner’s formula

Theorem

Let $Q = |ζ|^2$ and rescale about a boundary point in the outer normal direction. Then $R(z) = F(z + \bar{z})$ where F is "free boundary plasma function"

$$F(z) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{0} e^{-(z-t)^2/2} \, dt.$$

Figure: F is the analytic continuation to \mathbb{C} of the d.f. of the standard normal.
Rescaled Ward identity

Suppose $R(z) = \psi(z, z) \neq 0$. Put

$$B(z, w) := \frac{|K(z, w)|^2}{R(z)} = e^{-|z-w|^2} \frac{|\psi(z, w)|^2}{\psi(z, z)}, \quad C(z) := \int \frac{B(z, w)}{z - w} dA(w).$$

Theorem

$R > 0$ everywhere, $C(z)$ is smooth, and we have Ward's equation

$$\bar{\partial} C(z) = R(z) - 1 - \Delta \log R(z).$$

Since $R \mapsto \psi$ by polarization, this is an equation for R!

Note: Ward's equation holds at any (moving) point s.t. $R \neq 0$. To fix R uniquely, we need side-conditions. These depend on the nature of the point we're zooming on (bulk point, regular boundary pt, singular boundary pt).
Apriori estimates (side conditions)

Rescale about a regular boundary point in outer normal direction. Let $R(z)$ a limiting 1-point function.

1. Exterior estimate:

$$R(z) \leq Ce^{-2x^2}, \quad (x \geq 0).$$

2. 1/8-formula:

$$\int_{-\infty}^{+\infty} t \cdot (R(t) - \chi_{(-\infty,0)}(t)) \, dt = \frac{1}{8}.$$

(Proof: (1) by potential theory; (2) fluctuation theorem.)
Complementarity

A limiting kernel $K = G\Psi$ is a positive matrix in Aronszajn’s sense,

$$\sum_{j,k=1}^{N} \alpha_j \bar{\alpha}_k K(z_j, z_k) \geq 0.$$

(Because $\det(K(z_j, z_k))_{N \times N} = R_N(z_1, \ldots, z_N) \geq 0$.)

Theorem

The complementary kernel

$$\tilde{K}(z, w) = G(z, w)(1 - \Psi(z, w))$$

is also a positive matrix. In particular $R(z) = \Psi(z, z) \leq 1$.

Warning: \tilde{K} does not solve Ward, in general.
Translation Invariance (T.I.)

$R(z) = \psi(z, z)$ is called t.i. if $\psi(z + it, w + it) = \psi(z, w)$, $t \in \mathbb{R}$. Equivalently,

$$\psi(z, w) = \Phi(z + \bar{w})$$

where Φ is entire.
Gaussian representation

Theorem

If $K(z, w) = G(z, w)\Phi(z + \bar{w})$ is a t.i. limiting kernel, then there exists a Borel function f on \mathbb{R} with $0 \leq f \leq 1$ such that

$$\Phi(z) = \gamma * f(z) = \int_{-\infty}^{+\infty} \gamma(z - t)f(t) \, dt,$$

where γ is the Gaussian kernel

$$\gamma(z) = \frac{1}{\sqrt{2\pi}} e^{-z^2/2}.$$

Examples:

- Bulk: $\Phi \equiv 1 = \gamma * \chi_{\mathbb{R}}$
- The plasma kernel: $F = \gamma * \chi_{(-\infty,0)}$

Proof: Uses Bochner’s theorem on positive definite functions (also for the complementary kernel).
T.i. solutions to Ward’s equation

Theorem

Let \(R(z) = \Phi(z + \bar{z}) \) a t.i. limiting 1-point function with \(R \not\equiv 0 \). Then \(R \) solves Ward’s equation iff there is an interval \(I \subset \mathbb{R} \) such that

\[
\Phi = \gamma * \chi_I.
\]

Corollary

If \(R(z) = \Phi(z + \bar{z}) \) is rescaled about a regular boundary point and \(R \) is t.i. then

\[
\Phi = F = \gamma * \chi_{(-\infty,0)}.
\]

Comments:

1. **Conjecture:** An arbitrary limiting kernel is t.i (exception: bulk singularities, degenerate boundary singularities).
2. In the general (non-t.i.) case, Ward is a twisted convolution equation. The physically relevant ones "should" be the above.
Consequences

For radial $Q(\zeta) = Q(|\zeta|)$ and for "ellipse potential" $Q = |\zeta|^2 - t\text{Re}(\zeta^2)$ we know that any limiting 1-point function R is t.i.

Corollary

If Q is one of the types above, rescale about a boundary point. The rescaled systems $\{z_j\}_1^n$ converges to the field with kernel

$$K(z, w) = G(z, w) \cdot F(z + \bar{w}).$$

- This should be true for a general potential at a regular boundary point.
- Lee and Riser obtained this for the ellipse potential $Q(\zeta) = |\zeta|^2 - t\text{Re}(\zeta^2)$ using orthogonal polynomials.
Singular boundary points

Now assume that p is a cusp or a double point. If p is a cusp, we assume it has type $(\nu, 2)$ where $\nu > 3$, i.e. it resembles

$$x^{\nu} = y^2.$$

Theorem

Rescale according to $z_j = \sqrt{n\Delta Q(p)}(\zeta_j - p)$. Then any limiting kernel is trivial: $R = 0$.

(Proof: exterior estimate (suitable coord system)

$$R(z) = \psi(z, z) \leq Ce^{-2x^2}.$$

Since $L(z, w) = e^{z\bar{w}}\psi(z, w)$ is Hermitian-entire and positive definite, log $L(z, z)$ is subharmonic. This gives $\psi = 0$, by the maximum principle.)
Cusps; moving points

Assume S has a $(\nu, 2)$ cusp at p and fix $T > 0$. Let $p_n \in S$ be the point of distance $\frac{T}{\sqrt{n\Delta Q(p)}}$ from the boundary which is closest to p.

Rescale about p_n

$$z_j = e^{-i\theta_n}r_n^{-2}(\zeta_j - p_n), \quad j = 1, \ldots, n$$

where θ_n is chosen so that $e^{-i\theta_n}(p - p_n)$ is positive imaginary.
Existence theorem

Theorem

If T is sufficiently large, then each limiting 1-point function $R(z) = K(z, z)$ is positive, satisfies Ward’s equation, and the estimate

$$R(z) \leq Ce^{-2(|x|-T)^2}.$$ \hfill (3)

- Estimate (3) shows that R is associated with a "new" determinantal point field.
- After the rescaling, the droplet looks like the strip

$$\Sigma_T : \quad -T \leq \Re z \leq T,$$

so it is natural to assume that the field is t.i.
For $s > 0$ let

$$\Phi_s(z) = \gamma \ast \chi_{(-s,s)}(z) = \frac{1}{\sqrt{2\pi}} \int_{-s}^{s} e^{-\frac{(z-t)^2}{2}} \, dt.$$

If $s \leq 2T$ then $R_s(z) = \Phi(z + \bar{z})$ satisfies $R_s(x) \leq Ce^{-2(|x|-T)^2}$ and Ward’s equation.

- How should we choose s?
- In regular case, we used $1/8$-formula:

$$\int_{\mathbb{R}} t \cdot (R(t) - \chi_{(-\infty,0)}(t)) \, dt = \frac{1}{8}.$$

Something similar should hold at cusps.

Conclusion. We must extend the boundary fluctuation theorem to domains with cusps.
Natural candidates 2

Figure: The graphs of $R_T(x) := \Phi_{T/2}(2x)$ for $T = 2, 5, 8$.
The hard edge (Neumann B.C.’s)

Let \(Q \) be a potential. Define \(Q^S = Q \) on \(S \) and \(Q^S = +\infty \) otherwise. Let \(\{\zeta_j\} \) be a random sample from \(P_n \) and rescale about a regular boundary point \(p \) to obtain \(\{z_j\}_1^n \).

Theorem

For u.t.i. potentials, the processes \(\{z_j\}_1^n \) converge to a unique point field with correlation kernel

\[
K(z, w) = G(z, w)H(z + \bar{w})\chi_L(z)\chi_L(w), \quad L = \{Re z < 0\},
\]

where \(H \) is the hard edge plasma function,

\[
H(z) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{0} \frac{e^{-(z-t)^2/2}}{F(t)} dt,
\]

(\(F = \)free boundary plasma function).
The hard-edge theory is parallel to the free boundary; we can obtain existence of new hard edge fields near cusps, and so on.

Remaining problem. We need a fluctuation theorem for the hard edge to completely characterize the limiting kernels. (We can now do it up to a constant.)
Natural candidates 3: hard edge near a singular point

For $T > 0$ define

$$H_T(z) := \frac{1}{\sqrt{2\pi}} \int_{-2T}^{2T} \frac{e^{-(z-t)^2/2}}{F_T(t)} \, dt, \quad (F_T = \gamma \ast \chi(-2T,2T)).$$

The "1-point function" is then $R^h_T(z) := H_T(z + \bar{z})\chi(-T,T)(\text{Re } z)$.

Figure: The graph of R^h_T restricted to the reals, for $T = 2$, $T = 5$, and $T = 8$.
Suppose that $0 \in \text{Int } S$ and $\Delta Q(0) = 0$. Taylor expansion

$$Q(x + iy) = Q_0(x + iy) + \Re H(z) + \ldots$$

where $Q_0(x + iy) = \sum_{j=0}^{2k} a_j x^j y^{2k-j}$ is homogeneous of degree $2k$. Mesoscopic scale r_n satisfies $n\sigma(D(0, r_n)) = 1$, i.e.

$$r_n \sim n^{-1/2k}.$$

Limiting rescaled kernels take the form

$$K(z, w) = L(z, w) e^{-Q_0(\tau_0 z)/2 - Q_0(\tau_0 w)/2}.$$

Let $L_0(z, w)$ be the Bergman kernel of $L^2_{\mu_0}$, $d\mu_0 = e^{-Q_0(\tau_0 \cdot)} dA$ and $R_0(z) = L_0(z, z)e^{-Q_0(\tau_0 z)}$.

Bulk Singularities 2

Under suitable assumptions on Q we have $R = R_0$ for each limiting 1-point function. If $Q_0 = |\zeta|^{2k}$, $R_0(z) = M_k(|z|^2)e^{-Q_0(z)}$ where M_k is a Mittag-Leffler function.

Figure: R_0 for $Q_0 = |z|^4 - |z|^2\text{Re}(z^2)/2$ and the graph of the Mittag-Leffler function $M_2(x^2)$
Bulk singularities 3

Berezin kernels $B(z, w) = |L_0(z, w)|^2 e^{-Q_0(\tau_0 w)} / L_0(z, z)$ corresponding to $Q = |\zeta|^4$.

Figure: Berezin kernels rooted at 0 and at 1

Ward: $\bar{\partial}C = R - \Delta Q_0(\tau_0 \cdot) - \Delta \log R$.
Logarithmic singularities

Potential $Q(\zeta) = c_1|\zeta|^{2\lambda} + 2c_2 n^{-1} \log |\zeta| + \ldots$ has mesoscopic scale r_n satisfying $c_2 + c'_1 n r_n^{2\lambda} = 1$. Rescaling on the scale r_n we find that limiting 1-point functions are of the type $R_{\lambda,\mu}(z) = cE_{\lambda,\mu}(|z|^2)e^{-Q_0(\tau_0 z)}$ where

$$Q_0(z) = |z|^{2\lambda} + 2(1 - \lambda/\mu) \log |z|$$

and $E_{\lambda,\mu}(z) = \sum \frac{z^j}{\Gamma(\lambda_j + \mu)}$ a Mittag-Leffler function. The case $c_2 < 0$ corresponds to conical singularities, $c_2 > 0$ corresponds to branch-points on the Riemann surface associated with Q.

![Figure: The 1-point functions $R_{1,2}$ and $R_{2,4}$.](image)
Fekete points

Let p be a regular boundary point, and let $\mathcal{F}_n = \{\zeta_{jn}\}_{j=1}^n$ be an n-Fekete configuration, $n = 1, 2, \ldots$. Denote

$$d_n(\zeta_{nj}) = \sqrt{n\Delta Q(\zeta_{nj}) \cdot \min_{k \neq j} |\zeta_{nj} - \zeta_{nk}|},$$

and ("asymptotic separation constant")

$$\Delta(\mathcal{F}) = \liminf_{n \to \infty} \min_{j=1,\ldots,n} \left\{ d_n(\zeta_{nj}) \right\}.$$

Theorem

$$\Delta(\mathcal{F}) \geq 1/\sqrt{e}.$$

We believe that $\Delta(\mathcal{F}) = \sqrt{2/\sqrt{3}}$.
(This comes close to Abrikosov's conjecture.)
Comparison: the one-dimensional case

If Q is real-analytic on \mathbb{R} and $Q = +\infty$ outside \mathbb{R}, then S is a finite union of compact intervals. Let p be a boundary point. Rescale by

$$x_j = cn^{2/3}(\xi_j - p).$$

Theorem

In free boundary case, there is a c such that $\{x_j\}^n_1$ converges to the Airy process with kernel

$$K(x, y) = \frac{\text{Ai}(x)\text{Ai}'(y) - \text{Ai}'(x)\text{Ai}(y)}{x - y}.$$

In hard edge case we get a Bessel process with kernel

$$K(x, y) = \frac{\sqrt{x}\sqrt{y} J_0'(\sqrt{y}) - \sqrt{x} J_0'(\sqrt{x}) J_0(\sqrt{y})}{2(x - y)}.$$

These are reprokernels for "de Branges spaces". The two-dimensional plasma kernels are quite different.
We don’t now have a kernel, but we put

\[B(z, w) = \frac{R(z)R(w) - R_2(z, w)}{R(z)} \]

and

\[C(z) = \int_C \frac{B(z, w)}{z - w} dA(w). \]

Ward’s equation is

\[\bar{\partial}C = R - 1 - \frac{1}{\beta} \Delta \log R. \]

The equation needs to be "closed". When \(\beta = 1 \) we used the extra structure of existence of a kernel \(K = G\psi \).
In the "regular bulk case", Jancovici obtained the expansion
\[B^\beta(z, w) = e^{-|z-w|^2} + (\beta - 1)f(|z - w|) + O((\beta - 1)^2) \] with a certain explicit \(f \).

At a regular boundary point, Wiegmann et al proves
\[B^\beta(z, w) = e^{-|z-w|^2}|F(z + \bar{w})|^2/F(z + \bar{z}) + (\beta - 1)f(z, w) + \ldots. \]

Problems

1. What does Ward’s equation say about the correction \(f \)?
2. What is the correction in bulk singular case?
Degenerate boundary singularities

There can be points at the boundary where $\Delta Q = 0$. Example: $Q = |\zeta|^4 - \sqrt{2}\text{Re}(\zeta^2)$ gives a "figure 8" at 0.

1. Can we obtain new non-trivial point-fields by zooming at a suitable moving point approaching 0?
2. Can one characterize the degenerate boundary singularities a la Sakai?